$\mathfrak{g}$-quasi-Frobenius Lie algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

g-QUASI-FROBENIUS LIE ALGEBRAS

A Lie version of Turaev’s G-Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a g-quasi-Frobenius Lie algebra for g a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra (q, β) together with a left g-module structure which acts on q via derivations and for which β is g-inva...

متن کامل

An Approach to Quasi-hopf Algebras via Frobenius Coordinates

We study quasi-Hopf algebras and their subobjects over certain commutative rings from the point of view of Frobenius algebras. We introduce a type of Radford formula involving an anti-automorphism and the Nakayama automorphism of a Frobenius algebra, then view several results in quantum algebras from this vantage-point. In addition, separability and strong separability of quasi-Hopf algebras ar...

متن کامل

On the Frobenius-schur Indicators for Quasi-hopf Algebras

Mason and Ng have given a generalization to semisimple quasiHopf algebras of Linchenko and Montgomery’s generalization to semisimple Hopf algebras of the classical Frobenius-Schur theorem for group representations. We give a simplified proof, in particular a somewhat conceptual derivation of the appropriate form of the Frobenius-Schur indicator that indicates if and in which of two possible fas...

متن کامل

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

Labeled binary planar trees and quasi-Lie algebras

Let H be a finitely-generated free abelian group and L(H) the graded free Lie algebra on H . There is a natural homomorphism H ⊗ L(H)→ L(H) defined by bracketing, whose kernel is denoted D(H). If H supports a non-singular symplectic form, eg H = H1(Σ), where Σ is a closed orientable surface, with symplectic basis {xi, yi}, then D(H) is, in fact, a Lie algebra. It can be identified with the Lie ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archivum Mathematicum

سال: 2016

ISSN: 0044-8753,1212-5059

DOI: 10.5817/am2016-4-233